EMI and Equipment Malfunction in Cleanroom Environment

Any more questions, Mister "Why should I have to turn off my laptop on takeoffs and landings?"
Why Control of EMI is Important on Your Production Floor?

- EMI causes equipment lock-up
- EMI causes equipment and sensor malfunction
- EMI may cause component damage
- EMI is extremely difficult to diagnose using conventional methods

All of the above causes losses and downtime that nobody can afford today
What is EMI?

ElectroMagnetic Interference is negative influence of electromagnetic emission on equipment.

Until equipment is affected by electromagnetic emission in any way, that emission is not EMI, no matter how strong it is.

A very weak emission can be EMI and a very strong one may be not.
EMI-Caused Equipment Failures

Three Basic Types of Failures

- Fatal failure due to overstress
 - direct ESD discharge
 - very high EMI-induced signals

- Latch-Up
 - induced voltages are outside of supply rails
 - often recoverable after power-cycling
 - sometimes causes overheating and failure

- Injection of false signals
 - Induced signal is comparable to legitimate signals
Equipment Lock-Up: False Signals

- Electromagnetic fields induce seemingly legitimate signals into electronics circuits which leads to circuit malfunction
- Often, the electronics circuit does not suspect that it was affected by EMI
- Today’s high-speed circuits are much more susceptible to ESD-induced high-speed transients
- Virtually impossible to reproduce – difficult to diagnose

Induced EM Disturbance
An "Extra" Pulse
Sensor Malfunction

Strong electromagnetic fields induce voltages and currents in circuits.

In sensors such signals can affect legitimate signals and cause false readings.

Consequences:
- disrupted process
- good components failed
- bad components passed

TDMA mobile phone caused false readings in sensor of magnetic head tester and finally caused error message after failing several good GMR heads.
ESD-Caused EMI

- ESD Event is rapid current surge: causes magnetic field
- ESD Event is rapid drop of voltage: causes electric field
- In the far field: electromagnetic field
- ESD Events cause strong ground and power line currents -- EMI via conductive path
- ESD-induced EM fields have broad spectrum, high energy and rapid rise time -- good candidates for EMI
EMI: The Path to Destruction

- Charge is created
- Charge results in ESD Event
- ESD Event causes strong electromagnetic emission
- This emission propagates across the cleanroom and reaches the “victim”
- Equipment malfunction
Propagation of Electromagnetic Emission

Radiated
- Electromagnetic field composed of electric and magnetic fields propagates via air path just as emission from a mobile phone would reach the base station
- This field would create voltages and currents in any metal object, i.e. wire, PCB trace, etc.

Conducted
- The most neglected type of propagation
- High-frequency currents move via power, ground and data cables and inject undesirable signals into equipment

Mixed
- Radiated emission generates signals in wires and cables. These signals are then injected into equipment via conductive path
How Equipment Receives Electromagnetic Waves

- Any piece of wire is an antenna
- Any antenna will convert electromagnetic field into voltage and/or current
- A signal wire, a data cable, a ground wire, a power cable, a trace on the circuit board -- they are all antennae
- In order for antenna to be efficient, it needs to be 1/4 of the wavelength of the electromagnetic field
- With the rise time of ESD Events of 1nS or less, the energy spectrum of the rising front lies in the range of 500MHz to 2GHz or even higher
- At these frequencies the efficient antenna would be 1.5” to 6” long
- This covers most of the traces on the circuit boards

©2000 Credence Technologies www.credencetech.com
Charge in FABs

- **Wafers**
 - Wafers get charged by handling
 - 300mm wafer can carry plenty of charge
 - Wafers are insulators that cannot be discharged by grounding
 - Wafers cannot be discharged by ionization while in pods due to lack of air flow
 - Highly-charged wafers induce charge on metal surfaces

- **Anything Moving**
 - Carts
 - Insulated rollers

- **Other**
 - Improperly installed or out of balance ionizers
Isolated Metal Carts: Armed Bombs

- Wafers are charged to the limit
- SMIF pods with wafers are placed on steel cart
- Cart is charged by the wafers via inductance
- Wheels are insulators
EMI Environment
Inside the Tool

- Extraneous EMI Events are out of sync with the operation of equipment
- EMI Events from the carts was extremely strong even from far away
Induced Charge Issues

- The most harmful ESD Events are metal-to-metal
- Highly-charged wafers in pods induce charge on metal objects
- Metal-to-metal contact releases high levels of EMI energy that propagates across the fab causing equipment malfunction
- Large-mass metal object do not have to be charged to very high voltage to generate high energy EMI
- It is next to impossible to discharge wafers in pods in a normal production process

What can be done:
- Dissipate induced charges on metal objects
- Prevent metal-to-metal contact
Grounding from EMI Point of View

- Traditionally, ground quality is measured with a multimeter at DC or at very low frequencies.
- At high frequencies this method is useless.
- It is mostly high-frequency signals that cause equipment malfunction.

Mochi Moqui sacred shaman stones balls for “energy grounding” (Navaho Tribe)
Electrical Circuits Behavior at Low and at High Frequencies

Low frequencies and DC:
- Capacitor: Open circuit (infinite resistance)
- Long Wire: Short circuit (low resistance)

High frequencies (MHz and GHz):
- Capacitor: Short circuit (low impedance)
- Long Wire: Open circuit (high impedance)
Grounding at Low and High Frequencies

- If ground is done improperly, a ground wire acts as an inductor with high impedance at EMI frequencies.
- High-frequency “junk” doesn’t dissipate into the ground and resides on a workbench or on a tool.
- Conventional methodology and tools provide false assurance of “good ground.”
Equipment Lock-Up: Ground Bounce

- EMI induces voltages in equipment’s ground
- Current flows from equipment’s ground to facility’s ground
- If ground path is imperfect, voltage drop develops
- Equipment ground “bounces”
- Circuit signal levels are no longer valid
- Equipment malfunctions

©2000 Credence Technologies www.credencetech.com
Equipment Lock-Up: Injection of EMI into Ground Wires

- EMI induces voltages in long and poorly-done ground wires
- Equipment ground "bounces"
- Circuit signal levels are no longer valid
- Equipment malfunctions
Checking for Good Ground

Good ground is an “infinite sink.” It should have NO voltage on it. Just like a multimeter or a static field voltmeter shouldn’t see any DC voltage on a good ground, there should be no high-frequency voltages as well.

- Voltage causes electric field. High-frequency EMI can be easily measured.
- Bring EMI meter (not static field meter!) close to the grounded surface of your equipment or a workbench. Measure peak signals (very important for ESD-caused transients)
- If the equipment or the workbench is well-grounded, the emission level will drop
- OK ground will cause emission level to raise slightly
- Poor ground will cause emission level to raise several times
Things to Do to Improve Your
Ground

Don't Panic

- Shorten your ground wires
- Straighten your ground wires
- Use large gauge braided cable
- Connect it to known good ground
- Do not chain-link many workstations
- Always verify ground quality for EMI
- Do it on a regular basis

©2000 Credence Technologies www.credencetech.com
Do Not Use Long Ground Links

Example of Poor Grounding
- Long coiled wires
- Large impedance at high frequencies
- EMI does not dissipate into the ground
- Chained connection spreads EMI to all devices in the chain

Example of Good Grounding
- Short straight wires
- Low impedance at high frequencies
- Most of EMI dissipates into the ground
- Individual grounding prevents spreading of EMI to devices in the chain
Short Straight Ground Wires Reduce Effects of EMI

- Bad for EMI
 - Long coiled solid wire

- Good for EMI
 - Short straight stranded cable
How to Minimize Effect of EMI on Operation of a FAB

Reduce charge
- Proper choice of materials
- Reduce contact between dissimilar materials
- Provide static-dissipative path
- Provide ionization wherever appropriate

Avoid discharges
- Avoid metal-to-metal contacts
- Provide for slow dissipation rather than discharges

Reduce propagation of EMI
- Improve and maintain EMI-valid ground throughout the facility
- Use EMI filters on power and data lines
How to Minimize Effect of EMI on Operation of a FAB -- 2

| | Make sure that equipment you install in your facility was tested for EMI susceptibility (IEC 1000-4-2, IEC 1000-4-3 and IEC 1000-4-4)
Apply proper grounding techniques
Decouple long data cables
Implement ferrite chokes on cables (not ground!) |
|------------------|--|
| **Know your EMI environment** | **Monitor EMI environment**
Do EMI audit
Have EMI specification (max. levels)
Keep record of EMI environmental data for correlation of failures |
EMI: Verification Approach

- EMI is continuously monitored at the most vulnerable area of a tool
- If EMI is detected, the tool is instructed not to do anything new
- If EMI is detected, its presence is datalogged for future analysis
- If EMI is detected, alarm is issued
- If EMI is detected, tool can be checked
The Last Line of Defense: EMI Protection Devices

- When strong EMI is present, EMAAlert issues a signal indicating strong EMI conditions
- Based on that, equipment can be set to idle until the EMI condition goes away
- A remote warning of EMI condition is possible
- It is possible to test lock-up condition of equipment and even reset it
- EMI environment can be datalogged for failure correlation and improvement verification

©2000 Credence Technologies www.credencetech.com
Case Study

- A lumber company in Canada was using metal detectors in their saw mill operation in order to find nails in logs so that the saw blade is not damaged.
- Workers are using walkie-talkies that caused malfunction of the metal detector.
- EMAAlert® CTC022 installed next to the metal detector stops log advancement when the EMI is above the set threshold.
EMI Monitoring -- Hidden Problems Revealed

- Don’t let your equipment failures due to ESD and EMI catch you by surprise
- Know the real cause of failure (whether it is ESD/EMI related or not) -- no need to guess
- Real-time response to EMI/ESD condition is possible
- Address the root cause of the problem and prevent it from happening again.
Why EMI Matters Now More than Ever?

- Smaller geometries of today’s devices make them much more susceptible to ESD and EMI.
- The new circuits work at higher speeds and now “notice” the ultra-short spikes that older slower circuits ignored.
- Higher frequencies used in today’s electronics create more emission due to better antenna factor.
- Today’s circuits work at lower voltages: as low as 1.8V. Much lower levels of EMI are needed for their disturbance.
- The trend doesn’t look promising.
Contact Information

Vladimir Kraz
Credence Technologies
Tel. 831-459-7488
FAX 831-427-3513
www.credencetech.com